114 lines
2.7 KiB
Python
114 lines
2.7 KiB
Python
import os
|
|
import statistics
|
|
|
|
import imageio
|
|
|
|
from PIL import Image, ImageFilter, ImageMath
|
|
|
|
import numpy as np
|
|
import SimpleITK as sitk
|
|
|
|
STUDY_PATH = "/media/nfs/SRS/storage/0/CT Without Contrast-Brain_55121720"
|
|
STUDY_PATH = '/media/nfs/SRS/storage/0/MRI With_Without Contrast--Brain_54141890'
|
|
|
|
MODEL_PATH = '/home/xfr/nni/model-5-64/TwNuKtj7/best_zdoyO.pth'
|
|
|
|
|
|
# Write image series using SimpleITK
|
|
def flush_file(shape, fileNames):
|
|
if len(fileNames) > 1:
|
|
|
|
xy = min(shape)
|
|
|
|
outfile = '%s.nii.gz' % os.path.basename(fileNames[0]).split('.')[0]
|
|
img = sitk.ReadImage(fileNames)
|
|
img.SetSpacing([1.0,1.0, 1.0*xy/len(fileNames)])
|
|
sitk.WriteImage(img, outfile)
|
|
|
|
|
|
COR_ABS_THRESHOLD = 0.5
|
|
COR_REL_THRESHOLD = 0.8
|
|
|
|
def lower_bound(cors, begin, end):
|
|
# THRESHOLD = 3
|
|
THRESHOLD = 5
|
|
return np.mean(cors[begin+1:end]) - np.std(cors[begin+1:end]) * THRESHOLD
|
|
|
|
def lower_bound(cors, begin, end):
|
|
# Not so good
|
|
# THRESHOLD = 1.5
|
|
THRESHOLD = 2
|
|
Q1 = np.percentile(cors[begin+1:end], 25, interpolation = 'lower')
|
|
Q3 = np.percentile(cors[begin+1:end], 75, interpolation = 'higher')
|
|
IQR = Q3 - Q1
|
|
return Q1 - THRESHOLD * IQR
|
|
|
|
NewSer = None
|
|
|
|
def check_low(cors, begin, end):
|
|
if end - begin < 2:
|
|
return
|
|
mini = np.min(cors[begin+1:end])
|
|
if mini > COR_ABS_THRESHOLD and mini > lower_bound(cors, begin, end):
|
|
# exit()
|
|
return
|
|
argmin = np.argmin(cors[begin+1:end]) + begin+1
|
|
print(begin, end, lower_bound(cors, begin, end), mini, argmin)
|
|
NewSer[argmin] = 1
|
|
check_low(cors, begin, argmin)
|
|
check_low(cors, argmin, end)
|
|
# exit()
|
|
|
|
|
|
def main():
|
|
global NewSer
|
|
old_shape = None
|
|
old_array = None
|
|
old_cor = COR_ABS_THRESHOLD
|
|
fileNames = []
|
|
shapes = []
|
|
cors = []
|
|
|
|
for jpg_file in sorted(os.listdir(STUDY_PATH)):
|
|
jpg_path = os.path.join(STUDY_PATH, jpg_file)
|
|
|
|
array = np.asarray(Image.open(jpg_path).convert('L'))
|
|
shape = array.shape
|
|
|
|
# LB = lower_bound(cors)
|
|
|
|
if not fileNames:
|
|
cor = 0
|
|
else:
|
|
if old_shape != shape:
|
|
cor =0
|
|
else:
|
|
cor = np.corrcoef(old_array.flat, array.flat)[0,1]
|
|
|
|
fileNames.append(jpg_path)
|
|
shapes.append(shape)
|
|
cors.append(cor)
|
|
|
|
old_array = array
|
|
old_shape = shape
|
|
old_cor = cor
|
|
|
|
length = len(fileNames)
|
|
# print(length)
|
|
# exit()
|
|
|
|
for i in range(length):
|
|
# print(i)
|
|
print(fileNames[i], i, shapes[i], cors[i])
|
|
|
|
NewSer = np.zeros(length)
|
|
check_low(cors, 0, length)
|
|
|
|
for i in range(length):
|
|
# print(i)
|
|
print(fileNames[i], i, shapes[i], cors[i], '***' if NewSer[i] else '')
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|